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Solution of a linear system of Navier - Stokes equations is obtained in 

Boussinesq approximation for the plane motion of a viscous heat-conducting gas. 
induced by a local heat source in a stably stratified medium for a specified con- 
stant horizontal velocity of the oncoming stream. If the heat release is time 
independent, it is possible to separate in the case of stable stratification the 
asymptotically stationary flow region. The mechanism of the stationary flow 
formation is explained. A ~~~~ty of the flow related to the appearance 
downstream of the heat source of stationary waves whose length depends not 

only on the oncoming stream velocity but, also, on the vertical temperature 
gradient. It is shown that at some distance form the source the flow is unsteady 

and becomes divided into a number of vortices whose number depends on the 

convection development time and on the vertical temperature gradient. 

In a stably stratified medium the vertical gradient of density inhibits vertical mo- 
tion, and this introduces in the considered problem an inner scale determined by a 
characteristic dimension of the region in which the heat drainage induced by the up- 

ward motion and temperature gradient of the unperturbed medium takes place. With- 

in that region the effect of viscosity on convection becomes significant when the 
Reynolds number determined by the inner scale is not too high. In such case the flow 
throughout the space can be defined by the system of equations of free convection, 

1. Statement of the problem and its solution.Let 
a heat source of infinite length act in space in a direction normal to the plane (x, Z) 

(the oz -axis is vertical), The source is defined by the quantity of heat Q (z, 2, t) 
released in a unit of time t in the volume of unit area in the plane (5, Z) and of unit 

length in the direction of the oy -axis. We consider heat sources for which 

(lo(t)= 1 j: Qdxdz#m 
.-cc -a3 

(1.1) 

At some distance from the heat source a viscous heat conducting gas moves at constant 
velocity u along the ox -axis. 

Let us consider the plane perturbed motion of gas induced by the indicated heat 
source. We define the motion of such gas by the system of Navier - Stokes equations 
in the Boussinesq appro~mation 

(1.2) 
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i%_tUa~ = -+$+vAvz+g~ 

aT' x-+ ~~~+(y,--y)v,-~AT’=~+ 

where u + V, and v, are components of the perturbed stream velocity, p is the 

medium dynamic pressure; 5”’ = T - T,, where T is the temperature and T,(Z) 
is the temperature of the unperturbed medium; p is the density of gas; v is the kine- 
matic viscosity coefficient; x is the thermal diffusivity coefficient; ya = g / cP, 

where g is the acceleration of gravity and cp is the specific heat capacity of gas at 

constant pressure; and y = -i?T, / dz, 
We set v = x = const. To a stably stratified medium corresponds y = const 

c Yam 
We pass to the system of coordinates (z”, z) moving along the 2 -axis at const- 

ant velocity u . In these coordinates the system of equtions of free convection is free 
of terms containing u and the coordinates of the source are Q (z + ut, z, t) (here 

and in what follows the primes at the variable 5 are omitted). In the moving coordin- 
ate system the flow is of a local character and is dampened at infinity, This means 

that the flow has no potential part [l], and the system of equations of convection with 
boundary conditions reduces to the problem 

aA* --VA& = +c 
at 0 

aT' 
- - VAT’ + (y, - y) $ = 2 at 

(1.3) 

t=0,~=O,T'=O;x=z=~1,~=0, T'=O 

where I# is the stream function of the velocity field perturbation. 
To solve the system of Eqs. (1.3) for II, we apply operator d / at - VA to the 

first of these and operator gT,-r 8 / dx to the second. Adding the obtained equat- 
ions we obtain the problem 

L$ = g (pcpT,)-ldQ / ax ( 1.4) 

t = 0, 9 = 0, z=z=*oo,g=o 

L = (&-- vA)&A--v(-&- vA)AA+o,~~~ 

00 2 = (Ya - y) g I To = const > 0 

whose solution we represent in the form 
03 co t 

$=L 
pcpTo s ss ‘G( x, z, t 1 x’, z’, t’) $ Q (x’ + ut’, z’, t’) dt’dx’dz’ (1.5) 

-co-cOo 

The problem for the Green’s function G is of the form 

LG = 6 (z - 5') 6 (z - z')S (t - t') 
t=O, G=O; x=z=foo, G=O 

(1. 6) 
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To solve (1.6) we use the formal operator equation [2] 

G = L-VI (3 - 5’) 6 (z - z’) 6 (t - t’) + G, (1.7) 

which is equivalent to (1.6). In it L-l is the inverse of operator L and G, is 
the nonsingular part of Green’s function which is the solution of the homogeneous equa- 
tion J_&, = 0 and is determined with boundary conditions for function G taken into 

account. 
Representing 6 -functions in the form of Fourier expansion and taking into account 

(1.4), (1.5), and (1.71, we obtain 

00 cot 
+L s ss (1.8) 

PCJO 
’ Q (x’ + ut’, z’, t’) G* (x, z, t 1 x’, z’, t’) dt’ dx’dz’ 

1 sss ikl exp [ io (t - t’) + ik, (z - 
qp 

s’) + ika (2 - 271 do dkI dkz 
K (0, k,, ka) 

K = (W + k,2) 

In deriving (1.8) we 

([ia + v @la + k,2)la + OI~W / (W + WI 

assumed that 

00 m t . 

s ss 
a-$ dx’ dz’ dt’ = 0 

(1. 9) 

---00 -m 0 

It will be shown below that the assumption (1.9) follows from the condition of vanish- 
ing of the perturbation velocity components away from the heat source. 

Integrating G* in (1.8) with respect to CO, passing to the polar system of coordin- 

ates (k, cp) using formulas Fci = k cos q and k, = k sin cp , and integratmg 

with respect to k, we obtain 

an 
i s (1. 10) 

G*-: - 
80, [71av (t- ,‘)J”’ o 

A [c (cp)] sin [o. (t - t’) co.5 cpl d(P 

A(c) = exp (- ?)[I - erf (--if31 

5 (5, 5’, 2, z’, t, t’; cp) = 
(Z - d) cos cp -t (2 - 2’) sifi cp 

[4Y (t - ,‘)I’!’ 

Formula (1.10) together with (1.8) yields the solution of the problem, Passing to the 

fixed coordinate system, for the vertical velocity component we obtain 
co co t (1. 11) 

e 
‘, = 8nspc.P’1~Oo~v 

-&- Q (r’ + ut’, z’, t’) I dt’ dx’ dz’ 

I = &I + ~JX’/~C*) A (5”) cos q sin [o. (t - t’) GOS ~1 dq 
0 

5" G 6(x, x' + ut, 2, z', t, t'; rp) 
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2. The pattern of flow away from the heat source. 
We select the coordinate origin in the region in which Q # 0. In defining the flow 

!a at distances R = (z” i- z ) ‘1% that considerably exceed the characteristic dimension 

of the heat release region we substitute for Q in (1.8) and (1.11) the expression Q = 
Q. (t’) S(d) x6 (2’ + ut’) where Q. is determined by (1.1). We also assume 

that R > (~t)‘l*, R> ut. This means that we now consider the region which is 

virtually free of the heat from the source. There the flow is generated by the pressure 

field produced by the whole flow region, as well as by the perturbations of temperature 

T’ , which are generated by the induced source (ya - Y)V,. The effect of viscos- 
ity and thermal diffusivity in that region is negligibly small [3], hence it is possible 

to consider ZJ* to be large. The latter makes possible to write the formula for the 

stream function in conformity with (1.8) and (1.10) in the fixed coordinate system as 

t’ 

9 = - 7.~2 + 2h ; s s Qo (t’) cos [Q (t’ - z)] Jo (ooz> dz dt’ 
(2.1) 

0 0 

where J, is the Bessel function of the first kind of zero order and 52 = o,$ / R. 
It follows form (2.1) that convective motions are damped as R --t 00 . This confirms 

the applicability of condition (1.9). 
If Q,, is time independent, then with tQ > 1 from (2.1) we obtain for the 

problem the space-time asymptotic solution 

$= - uz + (Znp~,T,o,,~)-'gQ,, sin (Qt)/ x (2. 2) 

Note that formula (2.2) is invalid at the vertical axis (x = 0) , as well as near 
the horizontal axis where Q +. 0 and the inequality tQ > 1 cannot be satisfied. 

The asymptotic formulas (2.1) and (2.2) show that at considerable distances from 
the source unsteady oscillations appear. There the quantities 4, v,, V, , and T' 
vary at each point of space with frequency Q which depends on coordinates. The dep- 
endence on frequency Q leads in time to the decomposition of flow into vortices whose 

number in every time interval ‘t = 2n / coo, increases by one in a single quadrant of 
the plane. The term vortex defines here a simply connected fiow region within which 
vorticity is of the same sign. At the vortex boundaries II, = 0. Each separate vortex 

borders on vortices with inverse vorticity sign. This property of flow is described in 
[4] in which the problem of convection development in a stably stratified atmosphere 

by local temperature perturbation was considered. The oscillatory character of flow 
is due to stable stratification (o. > 0). In the case of neutral stratification (o. = 
0) oscillations are absent, and, as implied by (2. l), the solution is then of the form 

*= - uz + (2npc,T$1 gzR- j fQo (t’) dt’ 
0 

(2.3) 

Comparison of (2.2) with (2.3) shows that the character of the velocity amplitude dam- 
ping for both stable and neutral stratification as R +- 00 is the same, i. e.c- R-s. 

The asymptotic solutions (2.1) and (2.2) are also valid for nonlinear convection. 
However the conditions of their applicability are more rigid and dependent on the in- 
duced convection velocity. 
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3. The region of stationary f 1 o W. Let us consider the 
case when the source Q = Q&j (z’)6 (CC’ j- ut’) is linear and stationary, It foll- 
ows from (1.11) that in the region R < v/yt when u = 0, m,,# 0 aad w,t 
* 00 a monotonic decrease of velocity takes place as the distance from the CO- 

ordinate origin increases. This implies the existence of a solution of the plane problem 
which is stationary and damped at infinity. The possibility of appearance of a station- 
ary flow region is related to the presence in the third of Eqs, (1. 1) of the term (ya 
- y) rJ, which can be considered as an induced heat drain. The characteristic dim- 

ension of the region in which the induced drainage of heat has a compensating effect 

on the source Q is determined by the equality 

(~a - Y) v,*J2 = Qo / @cd (3. I) 

where the vertical velocity in the operation region of source Q is to be taken as v,* 
in (3.1). Setting u2 / (4~0~) < 1, from (1. 11) we find that at point z = z = 0 

v, = (4npc,v)-V',(y, - y)l-"~g'~~Q,,[l - u2 / (4wo)l (3.2) 

which implies that the oncoming stream stabilizes convection, 

From (3.1) and (3.2) we have 

I = (4nv I [oo(l - u2 1 (4wJ)lY'~ (3.3) 

Formulas (3.2) and (3.3) determine the applicability limit of the linear approximat- 

ionfor R1=v,l/v<l. The last condition in conjunction with (3.2) and (3. 3) 
shows that the linear approximation is applicable for 

Q. < (4~c)'$3c~v"'9~ - y) / [I - u2 /' (4~ WI)~~" 

For arbitrary values of parameter p = u / (2 ova) the formula for the verti- 

cal velocity at the coordinate origin is in accordance with (1.11) of the form 

v, (B) = 02 (0) Q*(B) 
2n 

vz* (B) = 1 
iu#l O” 1 

-so r/t, s 5 
A (z) cos2 q sin (t co9 cp) dcp dt 

t = - p J&OS cp 

where V, (0) is determined by (3.2) with fi = 0. Function I&* (b) is satisfactor- 
ily approximated by the formula v,* (p) = 2K1 arctg (fJ_“) which determines the 

character of the oncoming stream stabilizing effect on convection. As $ increases 

t&* monotonically decreases from its maximum value equal unity to zero. 
The interaction between the oncoming stream and the induced convection is sim- 

ilar to the stream flow at velocity II on an obstacle which in this case is the convect- 
ion zone perturbed by heat. Then with u # 0 a stationary flow independent of 

viscosity can be generated in the zone .! < R < -r/z. The characteristic dimen- 

sion of the obstacle is 1 and the”boundary layer” thickness L in which viscosity is 
present is equal (VI I U)“r. This estimate is the more accurate the higher Re = UZ 

/ v. The pattern of flow at R 9 L is obtained by setting in (1. ‘d) and (1.10) Q 
= Qo6(z’)6(s’ + ut’), indefinitely increasing t , and using ffor functionerf (Y) 

the asymptotic representation for considerable y. It follows then from (1.3) and 
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(1.10) that 
ooan 

9= 
gQo - uz i- (2n)gpc,T#& SS sin(o~-~2rcosrp) da, &$, 

(z-&)coscp+zsincp 
0 0 

The vertical velocity component at z = 0 is determined by formula 
00 

vz ($1 = 
gQo 

2npcpT0uB S J,(wou-'2') &' 
x - x’ 

0 

(3.4) 

The integral in (3.4) is understood in the sense of principal value. For z < 0 
and w. u-l 1 x 1 > 1 from (3.4) we have 

v, (X) = (~~c~~o~s)-~g~o~~~( O&--i 1 x 1) - H,( oou-’ I x I )I = 
(3.5) 

--(2npcpT,uwo)-‘gQo / I it? I + 0 [(o,u-‘~)-31 

where No and HO am, respectively, the Neumann and Struve functions. For posit- 
ive X from (3.4) we obtain 

(3.6) 
v, (2) = (4pc, ~oua)-‘gQo~~o(oou-ls) + Ho(oou-%)I s 

(2 ~~~c~~o~~o)-l vu I (w,z) sin (oou-% - n/4) + 

or( w&-13pj 

According to (3.5) and (3.6) the patterns of damping of the amplitude of vertical vel- 
ocities (vz - I z I -I, 5 < 0) and (v, N s+fe, x > 0) t respectively unstream 

and downstream is substantiall? different owing to the heat transfer by the oncoming 
stream to the region 5 > 0. The properties of convection upstream and downstream 

are qualitatively different. It follows from (3.6) that when wou?z > I stationary 
waves of length k = 2nu / o. are formed downstream of the heat source whose 
amplitude is dampened in accordance with the law z-‘/z as 5 --+ 00 , There the 

gas flows downward thus compensating the upward motion (3.2) in the region of the 

heat source. Stationuy waves are more pronounced in the first quadrant of the plane 

(2, 2). 
We note in conclusion thit for neutral classification (oO = 0) the linear solution 

(1.11) is divergent when t ---+ co. When u = 0 then at point 5 = z = 0 we have 

vz (b) =At/v, A = g~~i(8~pc~To~ (3.7) 

Solution (3.7) is valid as long as Rs = vz (f)l/z& 1. Condition R, < 1 impos- 
es a restriction on time (0 < t < A-%) during which the linear solution (3.7) is val- 
id. Although the oncoming stream (with u # 0) stabilizes convection, the linear 
approxima~on for ob = 0 also yields a divergent solution, namely, for t >> 4v I ~2 
at point I = z = 0 we have 

ur (L, u) = 2A {I - n-l In [ust / (4v)j} 

The author thanks P. N. Svirkunov for useful criticism and valuable remarks. 
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